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The initial value problem in quantum mechanics is most conveniently solved by the Green function
method. Instead of the conventional methods of eigenfunction expansion and path integration, we
present a new method for constructing the Green functions systematically. By using suitable
elementary transformations, one of the conjugate variables in the Hamiltonian can be eliminated and
the Green function for the simplified Hamiltonian can be easily derived. We then obtain the Green
function for the original Hamiltonian by the reverse sequence of the elementary transformations.
The method is illustrated for the linear potential, the harmonic oscillator, the centrifugal potential,
and the centripetal barrier oscillator. © 2006 American Association of Physics Teachers.
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I. INTRODUCTION

The Green function K�x ,x� ; t� of the Schrödinger equation
is the solution of i�� /�t�K=HK with the initial value
K�x ,x� ;0�=��x−x��, where H=H�p ,x� is the Hamiltonian
and p=−i�� /�x�. The Green function can be a powerful tool
for solving the initial value problem because the solution of
i�� /�t��=H� with any initial value ��x ,0� can be obtained
directly from the Green function by the convolution

��x,t� = �
−�

+�

��x�,0�K�x,x�;t�dx�. �1�

A well-known method for constructing the Green function
of the Schrödinger equation is given by the eigenfunction
expansion1

K�x,x�;t� =� �E
*�x���E�x�exp�− iEt�dE , �2�

where �E�x� is the normalized eigenfunction of H with the
eigenvalue E. Equation �2� is only a formal solution. Even if
we have solved the eigenvalue problem H�=E� to obtain
�E�x�, it might not be obvious how to convert the expansion
to a closed form.

Another formal solution can be expressed as the Feynman
path integral2

K�x,x�;t� =� exp�i�
0

t

L�ẋ,x,t�dt�Dx�t� , �3�

where the outer integration is over all paths from �x� ,0� to
�x , t� and L�ẋ ,x , t� is the Lagrangian of the system. It is also
difficult to reduce Eq. �3� to a closed form, except for the
elementary case in which L is quadratic in ẋ and x. Some
recent developments in Green function theory for localiza-
tion problems of quasi-periodic lattice Schrödinger operators
can be found in Ref. 3.

In this paper, we present a new method for constructing
the Green function. It is similar to the canonical-
transformation method of classical mechanics. In classical
mechanics, the use of a canonical transformation to simplify

the Hamiltonian is a standard procedure for solving the equa-
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tions of motion. If the Hamiltonian H�p ,x� can be canoni-

cally transformed into a one-variable form H̃�P�, then the

equation of motion is greatly simplified. Namely, Ṗ=

−�H̃ /�X=0 implies that P is a constant of the motion and

Ẋ=�H̃ /�P=constant implies that X evolves linearly in time.
For example, the Hamiltonian H�p ,x�= 1

2 p2+x can be trans-

formed into the one-variable form H̃�P�= P by canonical
transformations as follows. By the interchange transforma-
tion �p ,x�= �x1 ,−p1�, one transforms H= 1

2 p2+x to H1= 1
2x1

2

− p1, then by the similarity transformation �p1 ,x1�= �p2

+x2
2 /2 ,x2� to H2=−p2, finally by the point transformation

�p2 ,x2�= �−P ,−X� to H̃= P. As we shall see in Sec. II, these
elementary canonical transformations have analogs in quan-
tum mechanics and can all be written in the form

p = CPC−1, �4a�

x = CXC−1, �4b�

where C represents an integral transformation, multiplication
by a function, or an algebraic substitution.

In quantum mechanics, the reduction of the Hamiltonian
by elementary transformations is slightly more involved be-
cause p and x do not commute. For p=−i�� /�x�, one has the
commutation relation �p ,x�� px−xp=−i. By using Eq. �4�,
it might be possible to transform the Hamiltonian from

H�p ,x� to a simpler form H̃�P ,X�,

H̃�P,X� = H�CPC−1,CXC−1� = CH�P,X�C−1. �5�

By using a sequence of elementary transformations, it might
even be possible to reduce the Hamiltonian to a one-variable

form H̃�P�.
For the eigenvalue problem of the Schrödinger equation,

the identity of H̃=CHC−1 in Eq. �5� implies

H̃� = E� Û H�C−1�� = E�C−1�� . �6�

That is, the eigenfunction � of the original Hamiltonian H

can be obtained from the eigenfunction � of the simplified
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Hamiltonian H̃ by the inverse wavefunction transformation

� = C−1� . �7�

Because �p ,x�=C�P ,X�C−1, the commutation relation �p ,x�
=−i implies �P ,X�=−i or P=−i�� /�X�. The eigenfunction of
P is eikX with constant k. Therefore, the eigenfunction of the

one-variable Hamiltonian H̃�P� is also ��X�=eikX. From Eq.
�7�, the eigenfunction of the original H�p ,x� is ��x�
=C−1eikX. As we shall see, the effect of C−1 can be readily
evaluated. This method has been used to derive the energy
eigenfunctions for all known solvable quantum models.4–6

The method will be extended in this paper to solve the
initial value problem of the Schrödinger equation. The iden-

tity of H̃=CHC−1 in Eq. �5� implies

i
�

�t
� = H̃� Û i

�

�t
�C−1�� = H�C−1�� . �8�

That is, the solution of the original Schrödinger equation
i�� /�t��=H � can be obtained from the solution of the sim-

plified Schrödinger equation i�� /�t��= H̃ � by the inverse
wavefunction transformation �=C−1�. If the simplified
Hamiltonian depends on only one variable, the equation for
the Green function becomes

i
�

�t
K̃�X,x�;t� = H̃�P�K̃�X,x�;t� . �9�

As we shall see, Eq. �9� with the initial value K̃�X ,x� ;0�
=C��x−x�� can be easily solved. Then by the inverse wave-

function transformation K�x ,x� ; t�=C−1K̃�X ,x� ; t�, we obtain
the Green function of the original Schrodinger equation.

In Sec. II, we discuss the definitions and the corresponding
wavefunction transformations of the elementary transforma-
tions. In Sec. III, we show how to find the sequence of el-
ementary transformations that eliminates one of the conju-
gate variables in the Hamiltonian. The corresponding
wavefunction transformations can then be used to construct
the Green functions. To illustrate the method Green functions
are constructed for the linear potential, the harmonic oscilla-
tor, the centrifugal potential, and the centripetal barrier oscil-
lator.

II. ELEMENTARY TRANSFORMATIONS

In this section, the interchange, similarity, and point trans-
formations are introduced and their corresponding wavefunc-
tion transformations are discussed.5,6 The transformations are

interchange:�p,x� = �X,− P� , �10�

similarity:�p,x� = �P + f��X�,X� , �11�

point:�p,x� = 	 1

g��X�
P,g�X�
 , �12�

where f�=df /dX and g�=dg /dX. For simplicity, we will of-
ten use I to replace the “interchange” or “the interchange
transformation,” S to replace “similarity” or “the similarity
transformation,” and P to replace “point” or “the point trans-
formation.” The transformations can all be written in the

form
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�p,x� = �CPC−1,CXC−1� . �13�

The corresponding wavefunction transformations �=C�
and inverse wavefunction transformations �=C−1� are sum-
marized in the following.

For the interchange transformation, we compare the right-
hand sides of Eqs. �10� and �13� and obtain

X = CIPCI
−1, �14a�

− P = CIXCI
−1. �14b�

If we multiply Eq. �14� by CI from the right, it becomes
XCI=CIP and −PCI=CIX. The CI transformation can be
implemented by the Fourier transformation,

CI� = �
−�

+�

e−iX����,t�d� , �15�

because

X�CI�� = �
−�

+� 	i
�

��
e−iX�
���,t�d�

= �
−�

+�

e−iX��− i
�

��
���,t��d� = CI�P�� , �16a�

− P�CI�� = i
�

�X
�

−�

+�

e−iX����,t�d�

= �
−�

+�

e−iX������,t��d� = CI�X�� . �16b�

For the similarity transformation, we compare the right-
hand sides of Eqs. �11� and �13� and obtain

P + f��X� = CSPCS
−1, �17a�

X = CSXCS
−1. �17b�

If we multiply Eq. �17� by CS from the right, it becomes
�P+ f��X��CS=CSP and XCS=CSX. The CS transformation
can be implemented by multiplying � with e−if�X�,

CS� = e−if�X���X,t� , �18�

because

�P + f��X���CS�� = �− i
�

�X
+ f��X���e−if�X���X,t��,

= e−if�X��− i
�

�X
��X,t�� = CS�P�� ,

�19a�

X�CS�� = X�e−if�X���X,t�� = e−if�X��X��X,t�� = CS�X�� .

�19b�

For the point transformation we compare the right-hand sides
of Eqs. �12� and �13� and find

1
P = CPPCP

−1, �20a�

g��X�
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,

g�X� = CPXCP
−1. �20b�

If we multiply Eq. �20� by CP from the right, it becomes
�1/g��X��PCP=CPP and g�X�CP=CPX. The CP transforma-
tion can be implemented by changing variables,

CP� = ��g�X�,t� , �21�

because

1

g��X�
P�CP�� =

1

g��X�
	− i

�

�X

��g�X�,t�,

= �− i
�

�x
��x,t��

x=g�X�
= CP�P�� , �22a�

g�X��CP�� = g�X���g�X�,t� = CP�X�� . �22b�

As an example, we show how the x-linear Hamiltonian

H=a+bx with a=F�p� and b=G�p� can be reduced to H̃
= P by the three elementary transformations. This reduction
will be used repeatedly in the rest of this paper. The x-linear
Hamiltonian H=F�p�+G�p�x can be transformed by I to the
p-linear form H=F�x�−G�x�p, then transformed to H=
−G�x�p by the S transformation with f��x�=F�x� /G�x�, and

finally reduced to H̃= P by the inverse point P−1 transforma-
tion with 1/g��x�=−G�x�. We define the ordered combina-
tion of the particular I, S, and P−1 transformations described
above to be the x-linear transformation

Lx:F�p� + G�p�x = P , �23�

where Lx represents the word x-linear or the x-linear trans-
formation. It transforms the x-linear form to P. Its corre-
sponding wavefunction transformation is

CLx
� = CP

−1CSCI� = �e−if����
−�

+�

e−i�����,t�d��
�=g−1�X�

,

�24�

where

f��x� = F�x�/G�x� , �25a�

g��x� = − 1/G�x� . �25b�

In summary, the I, S, P, and Lx transformations and their
corresponding wavefunction transformations are

I:�p,x� = �X,− P�, � = CI� = �
−�

�

e−iX����,t�d� , �26a�

S:�p,x� = �P + f��X�,X�, � = CS� = e−if�X���X,t� ,

�26b�

P:�p,x� = 	 1

g��X�
P,g�X�
, � = CP� = ��g�X�,t� , �26c�

Lx:F�p� + G�p�x = P, � = CLx
�

= �e−if����
−�

+�

e−i�����,t�d��
�=g−1�X�

, �26d�
where � is the eigenfunction before the transformation and
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� is the eigenfunction after the transformation. The inverse
wavefunction transformations are

� = CI
−1� =

1

2�
�

−�

�

eix����,t�d� , �27a�

� = CS
−1� = eif�x���x,t� , �27b�

� = CP
−1� = ��g−1�x�,t� , �27c�

� = CLx

−1� =
1

2�
�

−�

+�

eix�eif�����g���,t�d� . �27d�

III. CONSTRUCTING THE GREEN FUNCTIONS

We now show how to construct the Green functions of the
Schrödinger equation by using the elementary transforma-
tions. The first step is bringing H�p ,x�= p2 /2+V�x� to a one-
variable form. A general scheme is to use a point transfor-
mation P :x→g�x� to simplify the potential V�x�, followed
by a similarity transformation S : p→p+ f��x� to bring in ad-
ditional terms from p2 /2 to eliminate the simplified V�x�. If
we make the right choice of g�x� and f�x�, the transformed
Hamiltonian will become much simpler. For example, it may
become an x-linear form, a p-linear form, or a p̃-linear form.6

A p-linear form F�x�+G�x�p can be transformed to an
x-linear form by I. A p̃-linear form is F�q�+G�q�p, where
q=x+h�p�. It can also be transformed to an x-linear form by
I and an S transformation. Then, the x-linear form can be
reduced to P by Lx as shown in Sec. II.

If the Hamiltonian depends only on one variable, that is,
H=H�P�, the solution of i�K /�t=H�P�K in terms of its ini-
tial condition K�X ,x� ;0� can be written as

K�X,x�;t� = e−iH�P�tK�X,x�;0� . �28�

By Eq. �14a�, one has P=CI
−1XCI and hence e−iH�P�t

=CI
−1e−iH�X�tCI. Consequently, Eq. �28� is equivalent to

K�X,x�;t� = CI
−1e−iH�X�tCIK�X,x�;0� , �29a�

=
1

2�
�

−�

�

eiX�e−iH���t��
−�

�

e−i��K��,x�;0�d��d�

�29b�

=�
−�

� � 1

2�
�

−�

�

e−iH���t+i��X−��d��K��,x�;0�d� .

�29c�

Equation �29� shows that the Green function K̃�X ,x� ; t� of
the Schrödinger equation for a one-variable Hamiltonian can

be obtained from its initial value K̃�X ,x� ;0� by an integral
transformation. For example, for the free particle H�p�
= p2 /2, the Green function K�x ,x� ; t� with the initial condi-
tion K�x ,x� ;0�=��x−x�� is

K�x,x�;t� = �
−�

� � 1

2�
�

−�

�

e−i��2/2�t+i��x−��d����� − x��d� ,
�30a�
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=
1

2�
�

−�

�

e−i��2/2�t+i��x−x��d� , �30b�

=� 1

2�it
exp�−

�x − x��2

2it
� , �30c�

where for the last step, we used

�
−�

+�

exp�− a�2 + b��d� =��

a
exp	 b2

4a

 . �31�

In the following examples, the Hamiltonian depends on
both conjugate variables. We illustrate how to transform the
Hamiltonian to a one-variable form to derive the Green func-

tion K̃�X ,x� ; t� and then transform it back to obtain
K�x ,x� ; t�. For the transformation of the initial value

K̃�X ,x� ;0�=C��x−x��, we use the wavefunction transforma-
tions in Eq. �26�, and for the transformation of the Green

function K�x ,x� ; t�=C−1K̃�X ,x� ; t�, we use the inverse wave-
function transformations in Eq. �27�.

Linear potential, H= p2 /2−Ux, where U is an arbitrary
positive constant. This Hamiltonian is an x-linear form and

can be reduced to H̃= P by the x-linear transformation

Lx:
p2

2
− Ux = P , �32�

which is the Lx in Eq. �26d� with F�p�= p2 /2 and G�p�=
−U. The corresponding wavefunction transformation is the
CLx

in Eq. �26d�, where by Eq. �25� f�x�=−x3 / �6U� and
g�x�=x /U, and hence g−1�X�=UX. The initial value
K�x ,x� ;0�=��x−x�� is transformed to the new variable as

K̃�X,x�;0� = CLx
��x − x�� , �33a�

=�ei�3/�6U��
−�

+�

e−i����� − x��d��
�=UX

, �33b�

=exp	 iU2X3

6
− iUXx�
 . �33c�

Because the Hamiltonian H̃= P now depends only on one
variable, the Green function can be obtained from its initial
value by Eq. �29c�,

K̃�X,x�;t� = �
−�

� � 1

2�
�

−�

�

ei��X−t−���K̃��,x�;0�d� , �34a�

=�
−�

�

��X − t − ��K̃��,x�;0�d� , �34b�

=K̃�X − t,x�;0� . �34c�
Therefore, the Green function in the new variable is
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K̃�X,x�;t� = exp� iU2�X − t�3

6
− iU�X − t�x�� . �35�

By using the inverse wavefunction transformation corre-

sponding to Eq. �32�, we can transform K̃�X ,x� ; t� back to
K�x ,x� ; t�, that is,

K�x,x�;t� = CLx

−1K̃�X,x�;t� , �36a�

=
1

2�
�

−�

+�

eix�e−i�3/�6U�K̃	 �

U
,x�;t
d� , �36b�

=
1

2�
exp	−

iU2t3

6
+ iUtx�
�

�
−�

+�

exp�−
it

2
�2 + i�	x − x� +

Ut2

2

�d� .

�36c�

By Eq. �31�, K�x ,x� ; t� is

K�x,x�;t� =� 1

2�it
exp�−

iU2t3

6
+ iUtx� −

1

2it

�	x − x� +
Ut2

2

2� . �37�

As U→0, the solution reduces to the Green function for the
free particle.

Harmonic oscillator, H= p2 /2+Ux2. The Hamiltonian can

be reduced to H̃= P−	 /2 by the transformations

S:�p,x� = �p1 + i	x1,x1� , �38a�

Lx:p1
2/2 + i	p1x1 = P , �38b�

where 	= ±�2U. The S transformation is used to bring in
additional terms from p2 /2 to eliminate the potential. After
that p2 /2= p1

2 /2+ i	p1x1−	 /2−	2x1
2 /2. The last term elimi-

nates the potential V=Ux1
2 when 	= ±�2U, and the Hamil-

tonian becomes the x-linear form H1= p1
2 /2+ i	p1x1−	 /2. It

is reduced to H̃= P−	 /2 by the x-linear transformation in
Eq. �38b�, which is the Lx in Eq. �26d� with F�p�= p2 /2 and
G�p�= i	p. Therefore, for the wavefunction transformation
CLx

, we have by Eq. �25� f�x�=−ix2 / �4	� and g�x�
= i ln x /	, and, hence, g−1�X�=e−i	X. We transform the initial
value K�x ,x� ;0�=��x−x�� to the new variable by the wave-
function transformations corresponding to Eq. �38a�,

K̃�X,x�;0� = CLx
CS��x − x�� , �39a�

=�e−�2/�4	��
−�

+�

e−i��e	�2/2��� − x��d��
�=e−i	X

,

�39b�
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=exp	−
1

4	
e−2i	X − ix�e−i	X +

	x�2

2

 . �39c�

In the new variable the Hamiltonian is H̃= P−	 /2, and the
Green function can be obtained from its initial value by Eq.
�29c�. It is

K̃�X,x�;t� = ei	t/2K̃�X − t,x�;0� , �40a�

=ei	t/2 exp�−
1

4	
e−2i	�X−t� − ix�e−i	�X−t�

+
	x�2

2
� . �40b�

By using the inverse wavefunction transformations in the

reverse order, we can transform K̃�X ,x� ; t� back to K�x ,x� ; t�,
that is,

K�x,x�;t� = CS
−1CLx

−1K̃�X,x�;t� , �41a�

=
e−	x2/2

2�
�

−�

+�

eix�e�2/�4	�K̃�i ln �/	,x�;t�d� .

�41b�

Because

K̃�i ln �/	,x�;t� = ei	t/2 exp	−
�2

4	
e2i	t − ix��ei	t

+
	x�2

2

 , �42�

we have

K�x,x�;t� = exp�	

2
�x�2 − x2�� ei	t/2

2�
�

�
−�

+�

exp�−
�2

4	
�e2i	t − 1� + i��x − x�ei	t��d� .

�43�

By Eq. �31�, K�x ,x� ; t� is

K�x,x�;t� = exp�	

2
�x�2 − x2�� ei	t/2

2�
� 4	�

e2i	t − 1

�exp�−
	�x − x�ei	t�2

e2i	t − 1
� , �44a�

=� 	

��ei	t − e−i	t�
exp�	

2
�x�2 − x2�

−
	�x − x�ei	t�2

2i	t � , �44b�

e − 1
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=� 	

2�i sin 	t
exp�−

	

2i sin 	t
�x2 cos 	t

− 2xx� + x�2 cos 	t�� . �44c�

Note that the solution in Eq. �44c� is the same for 	=�2U
and 	=−�2U.

Centrifugal potential, H= p2 /2+U /x2 with x
0. The

Hamiltonian can be reduced to H̃= P by the sequence of
transformations

P:�p,x� = �2�x1p1,�x1� , �45a�

S:�p1,x1� = �p2 + i�/x2,x2� , �45b�

Lx:2p2
2x2 + i�4� + 3�p2 = P , �45c�

where �= �−1±�1+8U� /4. The P transformation is used to
simplify the potential, after which V=U /x1 and p2 /2
=2��x1p1�2. By the S transformation, p2 /2 is further
transformed to 2��x2p2�2+4i�p2− �2�2+�� /x2. The last
term eliminates the simplified potential when
�= �−1±�1+8U� /4, and the Hamiltonian becomes the
x-linear form H2=2��x2p2�2+4i�p2=2p2

2x2+ i�4�+3�p2. The

Hamiltonian H2 is reduced to H̃= P by the x-linear transfor-
mation in Eq. �45c�,which is the Lx in Eq. �26d� with F�p�
= i�4�+3�p and G�p�=2p2. Therefore, for the wavefunction
transformation CLx

, we have by Eq. �25� f�x�= i�2�
+3/2�ln x and g�x�=1/ �2x�, and hence g−1�X�=1/ �2X�. The
initial value K�x ,x� ;0�=��x−x�� is transformed to the new
variable by the wavefunction transformations corresponding
to Eq. �45� as

K̃�X,x�;0� = CLx
CSCP��x − x�� , �46a�

=��2�+3/2�
0

+�

e−i�������� − x��d��
�=1/�2X�

.

�46b�

We set �=�2 and obtain

K̃�X,x�;0� = ��2�+3/2�
0

+�

e−i��2
�2���� − x��2�d��

�=1/�2X�

,

�47a�

=2x�2�+1	 1

2X

2�+3/2

exp	− ix�2

2X

 . �47b�

In the new variable the Hamiltonian is H̃= P, and hence is
similar to the linear potential,

˜ ˜
K�X,x�;t� = K�X − t,x�;0� , �48a�

604Gin-yih Tsaur and Jyhpyng Wang



=2x�2�+1� 1

2�X − t��2�+3/2

exp� − ix�2

2�X − t�� .

�48b�

By using the inverse wavefunction transformations in the

reverse order, we can transform K̃�X ,x� ; t� back to K�x ,x� ; t�,
that is,

K�x,x�;t� = CP
−1CS

−1CLx

−1K̃�X,x�;t� , �49a�

=��−�

2�
�

−�

+�

ei���−�2�+3/2�K̃	 1

2�
,x�;t
d��

�=x2

,

�49b�

=
x�2�+1x−2�

�
�

−�

+�

eix2�	 1

1 − 2�t

2�+3/2

�exp	− i�x�2

1 − 2�t

d� . �49c�

If we set u=1−2�t, namely �= �1−u� / �2t� and �−�
+�d�

=1/ �2t��−�
+�du, Eq. �49c� becomes

K�x,x�;t� =
x�2�+1x−2�

2�t
exp	 ix2

2t
+

ix�2

2t

�

−�

+�

u−2�−3/2

�exp	−
ix2u

2t
−

ix�2

2tu

du �50a�

=i2�−1/2
�xx�

t
exp	 ix2

2t
+

ix�2

2t

J−2�−1/2	 xx�

t

 ,

�50b�

where J
�r��1/ �−2�i��r /2�
�s
−1exp�−r2s /4+1/s�ds is the
Bessel function. If −2�−1/2�0, the term J−2�−1/2 diverges
as x→0. Hence, the root �= �−1+�1+8U� /4 should be ex-
cluded.

Centripetal barrier oscillator, H= p2 /2+U�x−1/x�2 with
x
0. This example is given as an exercise in the appendix.

IV. SUMMARY

We have shown that by using elementary transformations
it is possible to simplify the Hamiltonian so that its Green
function can be derived easily. The Green functions of the
linear potential, the harmonic oscillator, and the centrifugal
potential can be found in Refs. 1 and 7, where they are
solved by the eigenfunction expansion method described in
Eq. �2�. The Green function of the harmonic oscillator can
also be found in Ref. 2, where it is solved by Feynman’s path
integral method described in Eq. �3�. Because the elementary
transformations preserve the commutation relation �p ,x�=
−i, they are canonical transformations in quantum mechan-
ics. The interchange transformation corresponds to the inter-
change of coordinate and momentum, the similarity transfor-
mation corresponds to a gauge transformation, and the point
transformation corresponds to a change of variables. They
are the simplest canonical transformations in both classical
and quantum mechanics.

The method used in this paper is analogous to the canoni-
8
cal methods of analysis of classical mechanics. We hope
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that further development of this method may help establish
links to the wealth of powerful techniques in classical me-
chanics, such as superconvergent perturbation theory9,10 and
the Kolmogorov–Arnold–Moser theorem10,11 for the analysis
of quantum dynamics.

APPENDIX: SOLUTION OF THE CENTRIPETAL
BARRIER OSCILLATOR

The Hamiltonian of the centripetal barrier oscillator is H
= p2 /2+U�x−1/x�2 with x
0. To reduce H to a one-variable
form, the first step is to use the point transformation x
=g�x1� to simplify the potential. The original potential con-
tains quadratic terms, such as x2 and 1/x2. If we wish to
change them to x and 1/x, respectively, what should be the
choice of g�x1�? What is the corresponding change of p2 /2?
Hint: Use Eq. �12�.

Solution: By choosing g�x1�=�x1, the potential is changed
to V=U�x1+1/x1−2� and p2 /2 is changed to 2��x1p1�2

=2p1
2x1+3ip1.

To eliminate the potential V=U�x1+1/x1−2� a similarity
transformation should be used. Note that now the p2 /2 term
has been changed to 2p1

2x1+3ip1, which means a similarity
transformation p1= p2+ i	+ i� /x2 would give extra terms in x
and 1/x. By a suitable choice of 	 and �, these extra terms
cancel the potential. To achieve this goal, what values should
be chosen for 	 and �?

Solution: If we substitute �p1 ,x1� by �p2+ i	+ i� /x2 ,x2�,
we find that the choice 	= ±�U /2 and �= �−1±�1+8U� /4
eliminates the potential. The Hamiltonian becomes the
x-linear form H2=2p2�p2+2i	�x2+2a�p2+2i	�+2bp2,
where a= i�	+�+3/4� and b= i�−	+�+3/4�.

Now the Hamiltonian becomes an x-linear form, which

can be reduced to H̃= P by an x-linear transformation
F�p2�+G�p2�x2= P. What are the forms of F�p2� and G�p2�?

Solution: They are F�p2�=2a�p2+2i	�+2bp2 and G�p2�
=2p2�p2+2i	�. Therefore, for the wavefunction transforma-
tion CLx

, we have by Eq. �25� f�x�=a ln x+b ln�x+2i	� and
g�x�= i / �4	�ln�x / �x+2i	��, hence g−1�X�=2i	 / �e4i	X−1�.

The initial value of the Green function for the original
Hamiltonian is K�x ,x� ;0�=��x−x��, and that for the simpli-

fied H̃ is K̃�X ,x� ;0�=CLx
CSCP ��x−x��. Evaluate K̃�X ,x� ;0�

using Eq. �26�.
Solution: According to Eq. �26�, we have

K̃�X,x�;0� = CLx
CSCP��x − x�� , �A1a�

=��−ia�� + 2i	�−ib�
0

+�

e−i��e	�������

− x��d��
�=2i	/�e4i	X−1�

. �A1b�

If we set �=�2, we find

K̃�X,x�;0� = ��−ia�� + 2i	�−ib�
0

+�

e−i��2
e	�2

�2����

− x��2�d��
4i	X

, �A2a�

�=2i	/�e −1�

605Gin-yih Tsaur and Jyhpyng Wang



=2e	x�2
x�2�+1��−ia��

+ 2i	�−ibe−i�x�2��=2i	/�e4i	X−1�, �A2b�

=2e	x�2
x�2�+1e4b	X	 2i	

e4i	X − 1

−i�a+b�

�exp	 2	x�2

e4i	X − 1

 . �A2c�

According to Eq. �34c�, the Green function K̃�X ,x� ; t� for

H̃ is K̃�X− t ,x� ;0�. We can now transform K̃�X ,x� ; t� back to

the original variables by K�x ,x� ; t�=CP
−1CS

−1CLx

−1K̃�X ,x� ; t�.
Evaluate K�x ,x� ; t� using Eq. �27�.

Solution: According to Eq. �34c�, we have

K̃�X,x�;t� = K̃�X − t,x�;0� , �A3a�

=2e	x�2
x�2�+1e4b	�X−t�

�� 2i	

e4i	�X−t� − 1
�−i�a+b�

exp� 2	x�2

e4i	�X−t� − 1
� .

�A3b�

According to Eq. �27�, we have

K�x,x�;t� = CP
−1CS

−1CLx

−1K̃�X,x�;t� , �A4a�

=e−	x2
x−2� 1

2�
�

−�

+�

eix2��ia��

+ 2i	�ibK̃	 i

4	
ln

�

� + 2i	
,x�;t
d� , �A4b�

=e−	x2
x−2� 1

�
e	x�2

x�2�+1e−4b	t�2i	�−i�a+b�

��
−�

+�

eix2�� 1

�� + 2i	�e−4i	t − �
�−i�a+b�

�exp� 2	x�2�

�� + 2i	�e−4i	t − �
�d� . �A4c�

Set u= ��+2i	�e−4i	t−�, namely �= �u−2i	e−4i	t� / f�t�,
where f�t�=e−4i	t−1. Then Eq. �A4c� becomes
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K�x,x�;t� =
�2i	�−i�a+b�

�f�t�
x−2�x�2�+1

�exp�	�x�2 − x2 − 4bt�

+
2	x�2 + 2	x2e−4i	t

f�t� � �� ui�a+b�

�exp� ix2u

f�t�
−

4i	2x�2e−4i	t

f�t�u �du , �A5�

where b= i�−	+�+3/4� and i�a+b�=−2�−3/2. Note that
f�t�=−2ie−2i	t sin�2	t� and, therefore,

K�x,x�;t� = i2�+3/2 2	�xx�

sin�2	t�
exp�4i	2t + i	 cot�2	t��x�2

+ x2��J−2�−1/2� 2	xx�

sin�2	t�� . �A6�

The solution in Eq. �A6� is the same for 	= ±�U /2 and the
root �= �−1+�1+8U� /4 should be excluded because the
corresponding J−2�−1/2 diverges as x→0.

a�Electronic mail: gytsaur@thu.edu.tw
1D. ter Haar, Problems in Quantum Mechanics �Pion Limited, London,
1975�, Chap. 3.

2R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals
�McGraw–Hill, New York, 1995�, pp. 58–63.

3J. Bourgain, Green’s Function Estimates for Lattice Schrödinger Opera-
tors and Applications �Princeton University Press, Princeton, New Jersey,
2005�, and references therein.

4F. Leyvraz and T. H. Seligman, “Sequences of point-transformations and
linear canonical-transformation in classical and quantum-mechanics,” J.
Math. Phys. 30, 2512–2515 �1989�.

5A. Anderson, “Canonical-transformations in quantum-mechanics,” Ann.
Phys. 232, 292–331 �1994�.

6G. Tsaur and J. Wang, “Integration of the Schrödinger equation by ca-
nonical transformations,” Phys. Rev. A 65, 012104-1–7 �2001�.

7M. Moshinsky and Anju Sharma, “Canonical transformations for time
evolution and their representation in Wigner distribution phase space,”
Ann. Phys. 282, 138–153 �2000�.

8A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics,
2nd Ed. �Springer, New York, 1992�, Chap. 2.

9B. McNamara, “Super-convergent adiabatic invariants with resonant de-
nominators by Lie transforms,” J. Math. Phys. 19, 2154–2164 �1978�.

10A. N. Kolmogorov, “The general theory of dynamical systems and clas-
sical mechanics,” Proceedings of the International Congress of Mathema-
ticians �Amsterdam, 1954� 1, 315–333 �1957�.

11 J. Moser, “On invariant curves of area-preserving mappings of an annu-
lus,” Nachr. Akad. Wiss. Goett. II, Math.-Phys. Kl. 1, 1–20 �1962�.
606Gin-yih Tsaur and Jyhpyng Wang


